Principal component models for sparse functional data

نویسندگان

  • Gareth M. James
  • Trevor J. Hastie
  • Catherine A. Sugar
چکیده

The elements of a multivariate data set are often curves rather than single points. Functional principal components can be used to describe the modes of variation of such curves. If one has complete measurements for each individual curve or, as is more common, one has measurements on a fine grid taken at the same time points for all curves, then many standard techniques may be applied. However, curves are often measured at an irregular and sparse set of time points which can differ widely across individuals. We present a technique for handling this more difficult case using a reduced rank mixed effects framework.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

Functional Modeling and Classification of Longitudinal Data

We review and extend some statistical tools that have proved useful for analyzing functional data. Functional data analysis primarily is designed for the analysis of random trajectories and infinite-dimensional data, and there exists a need for the development of adequate statistical estimation and inference techniques. While this field is in flux, some methods have proven useful. These include...

متن کامل

Functional Modelling and Classification of Longitudinal Data*

We review and extend some statistical tools that have proved useful for analysing functional data. Functional data analysis primarily is designed for the analysis of random trajectories and infinite-dimensional data, and there exists a need for the development of adequate statistical estimation and inference techniques. While this field is in flux, some methods have proven useful. These include...

متن کامل

Modeling Sparse Generalized Longitudinal Observations With Latent Gaussian Processes

In longitudinal data analysis one frequently encounters non-Gaussian data that are repeatedly collected for a sample of individuals over time. The repeated observations could be binomial, Poisson or of another discrete type or could be continuous. The timings of the repeated measurements are often sparse and irregular. We introduce a latent Gaussian process model for such data, establishing a c...

متن کامل

Modelling sparse generalized longitudinal observations with latent Gaussian processes

In longitudinal data analysis one frequently encounters non-Gaussian data that are repeatedly collected for a sample of individuals over time. The repeated observations could be binomial, Poisson or of another discrete type or could be continuous.The timings of the repeated measurements are often sparse and irregular. We introduce a latent Gaussian process model for such data, establishing a co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999